Answer : The volume of pure diamond is
Explanation : Given,
Density of pure carbon in diamond =
Moles of pure diamond = 23.7 moles
Molar mass of carbon = 12 g/mol
First we have to calculate the mass of carbon or pure diamond.
Molar mass of carbon = 12 g/mol
Now we have to calculate the volume of carbon or pure diamond.
Formula used:
Now putting all the given values in this formula, we get:
Volume =
As we know that:
So,
Volume =
Volume =
Therefore, the volume of pure diamond is
<span>Important information to solve the exercise :
Substance ΔHf (kJ/mol):
HCl(g)= −92.0 </span><span>kJ/mol
Al(OH)3(s)= −1277.0 </span><span><span>kJ/mol
</span> H2O(l)= −285.8 </span><span>kJ/mol
AlCl3(s) =−705.6 </span><span>kJ/mol
</span><span>Al(OH)3(s)+3HCl(g)→AlCl3(s)+3H2O(l)
reactants products
products- reactants:</span><span>
(−705.6) + (3 x −285.8) - ( −1277.0 ) - (3 x −92.0 ) = - 10.0 </span>kJ per mole at 25°C
<span>
</span>
then the electrons and protons would have a even amount of negetive electric charges
Answer:
1: energy
2: converts
Kinetic energy is either 3 or 4, those questions are really similar.
Explanation:
When a metal replaces another metal in solution, we say such a reaction has undergone a single displacement reaction.
In such a reaction, metal higher up in the activity series replaces another one due to their position.
To known the metal or metals that will replace the given copper, we need to reference the activity series of metals.
Every metal higher than copper in the series will displace copper from the solution.
So, there metals are: potassium, sodium, lithium, barium, strontium etc.