Answer:
The speed of the wire is 5 m/s.
Explanation:
Given that,
Length = 20 cm
Magnetic field = 0.1 T
Current = 10 mA
Resistance
We need to calculate the speed of the wire
Using formula of emf
Using formula of current
Put the value of into the formula of current
Hence, The speed of the wire is 5 m/s.
Answer:
The correct answer is d
Explanation:
In this exercise they ask us which statement is correct, for this we plan the solution of the problem, this is a Doppler effect problem, it is the frequency change due to the relative speed between the emitter and the receiver of sound.
The expression for the Doppler effect of a moving source is
f ’= (v / (v- + v_s) f
From this expression we see that if the speed the sound source is different from zero feels a change in the frequency.
The correct answer is d
Voltage is the difference in charge between two points.
Current is the rate the charge flows
Resistance is the tendency a material has to resist the flow of charge (current)
Combining voltage resistance and current Ohm developed the formula
V (Voltage)= I (Current) x R (Resistance)
Answer:
The ball will have an upward velocity of 6 m/s at a height of 5.51 m.
Explanation:
Hi there!
The equations of height and velocity of the ball are the following:
y = y0 + v0 · t + 1/2 · g · t²
v = v0 + g · t
Where:
y = height at time t.
y0 = initial height.
v0 = initial velocity.
t = time.
g = acceleration due to gravity (-9.81 m/s² considering the upward direction as positive).
v = velocity of the ball at time t.
Placing the origin at the throwing point, y0 = 0.
Let´s use the equation of velocity to obtain the time at which the velocity is 12.0 m/s / 2 = 6.00 m/s.
v = v0 + g · t
6.00 m/s = 12.0 m/s -9.81 m/s² · t
(6.00 - 12.0)m/s / -9.81 m/s² = t
t = 0.612 s
Now, let´s calculate the height of the baseball at that time:
y = y0 + v0 · t + 1/2 · g · t² (y0 = 0)
y = 12.0 m/s · 0.612 s - 1/2 · 9.81 m/s² · (0.612 s)²
y = 5.51 m
The ball will have an upward velocity of 6 m/s at a height of 5.51 m.
Have a nice day!