The thing that happens to the speed of the pulse when you stretch the hose more tightly is that it increases.
<h3>What is wage speed?</h3>
It should be noted that wave speed simply means the distance that a wave travels during a particular time.
It should be noted that higher tension leads to an increase in the speed of the wave.
Therefore, the thing that happens to the speed of the pulse when you stretch the hose more tightly is that it increases.
Learn more about speed on:
brainly.com/question/13943409
#SPJ4
Explanation:
given,
mass of one planet (m1)=2*10^23 kg
mass of another planet (m2)=5*10^22kg
distance between them(d)=3*10^16m
gravitational constant(G)=6.67*10^-11Nm^2kg^-2
gravitational force between them(F)=?
we know,
F=Gm1m2/d^2
or, F=6.67*10^-11*2*10^23*5*10^22/(3*10^16)^2
or, F=6.67*2*5*10^-11+23+22/3*3*10^32
or, F=66.7*10^34/9*10^32
or, F=7.41*10^34-32
•°• F=7.41*10^2
thus, the gravitational force between them is 7.14*10^2
Answer:
1.549 m
Explanation:
Given:
The radius of the circular board, r = 2 m
The probability of hitting the red is given as 0.6
Now, this probability of hitting the red can be conclude as
0.6 = (Area of red)/ (Total area of the board)
Total area of the board = πr² = π × 2²
let the radius of the red area be R
thus, area of red circle, = πR²
on substituting the value of the area, we have
0.6 = (πR²)/ (π × 2²)
or
R² = 2.4
or
R = 1.549 m
Thus, the radius of the red circle is 1.549 m
Answer:
The child represented by a star on the outside path.
Explanation:
In this problem, we apply the equation regarding kinematics expressed as vf^2 = v0^2 + 2as vf eventually becomes zero because the ball stops in the end. a = -9.8 m/s2s = 2 metres this time
This gives initial velocity, vo equal to 6.26m/s
now 6.26-(-8.85) = 15.11m/s
change in velocity/change in time = average acceleration 15.11/(12/1000) = 1259.167 m/s^2