I assume the block plows into the bank of sand with a velocity of 6 m/s and comes to a stop in 2 s.
Answer:
The discharge of the stream at this location is 40 cubic meters per second.
Explanation:
The discharge is the volume flow rate of the water in the stream. For this purpose we can use the following formula:
Discharge = Volume Flow Rate = (Cross-Sectional Area)(Velocity of Stream)
Volume Flow Rate = (Width of Stream)(Depth of Stream)(Velocity of Stream)
Volume Flow Rate = (4 meters)(2 meters)(5 meters per second)
<u>Volume Flow Rate = 40 cubic meters per second</u>
Therefore, the discharge of the stream at this location is found to be <u>40 cubic meters per second</u>
This result shows that 40 cubic meters volume of water passes or discharges through this point in a time of one second. Hence, this is called the volume flow rate or the discharge of the stream.
....................................
Answer:
P = 180 [w]
Explanation:
To solve this problem we must use ohm's law, which is defined by the following formula.
V = I*R & P = V*I
where:
V = voltage = 200[volts]
I = current [amp]
R = resistance [ohm]
P = power [watts]
Since the bulbs are connected in series, the powers should be summed
P = 60 + 60 + 60
P = 180 [watts]
Now we can calculate the current
I = 180/200
I = 0.9[amp]
Attached is an image where we see the three bulbs connected in series, in the circuit we see that the current is the same for all the elements connected to the circuit.
And the power is defined by P = V*I
we know that the voltage is equal to 200[V], therefore
P = 200*0.9
P = 180 [w]