Physics- damon, Monday, December 1, 2014 at 3:27 pm force =change in momentum\ change in time or m a if m is constant
change in momentum/3=200
change in momentum =3*200 kg m/s
Answer:
Explanation:
Time taken by stone to cover horizontal distance
where t is time, h is height of whirling the stone in horizontal circle, g is gravitational constant, Substituting h for 2.1 m and g for 9.81
= 0.654654 seconds
t=0.65 s
Velocity, v= distance/time
v=10/0.65= 15.27525 m/s
v=15.3 m/s
where r is radius of circle, substituting r with 1.1m
Therefore, centripetal acceleration is
Answer:
20 m/s
30 m/s
Explanation:
Given:
v₀ = -10 m/s
a = -9.8 m/s²
When t = 1 s:
v = v₀ + at
v = (-10 m/s) + (-9.8 m/s²) (1 s)
v = -19.8 m/s
When t = 2 s:
v = v₀ + at
v = (-10 m/s) + (-9.8 m/s²) (2 s)
v = -29.6 m/s
Rounded to one significant figures, the speed of the ball at 1 s and 2 s is 20 m/s and 30 m/s, respectively.
Sherry who says one factor is the length of the path of sunlight is correct.
<h3>
Factors affecting light scattering</h3>
There are two main factors which affects light scattering, and they include the following;
- the size of the particles
- wavelength of the light
length of the path of sunlight is equivalent to wavelength of the light.
Thus, we can conclude that Sherry who says one factor is the length of the path of sunlight is correct.
Learn more about light scattering here: brainly.com/question/1381101
#SPJ1
Answer:
a=2.304×10¹⁶m/s²
Explanation:
Given data
Distance d=2.5 nm=2,5×10⁻⁹m
Mass of proton m=1.6×10⁻²⁷kg
charge of proton q=1.6×10⁻¹⁹C
To find
acceleration a
Solution
Apply the Coulombs Law
Where k is coulombs constant (k=9×10⁹Nm²/C²)
q=q₁=q₂
r=d
So