Answer that I say is that the thing is protein.
Answer:
E) can usually make enough ATP for skeletal muscle function
Explanation:
Glycolysis is the main process by which cells obtain energy. During glycolysis, glucose is fully oxidized to obtain ATP, this is the 'fuel' for cellular function. Glycolysis is oxygen dependant, meaning that in order to successfully complete the process, enough oxygen must be available.
There are a few exceptions in which glycolysis is unable to provide enough ATP, an example is strenuous exercise. In this case the speed of oxygen consumption is very high, therefore at some point the oxygen intake is not enough. There are several mechanisms that regulate the production of ATP. In case of strenuous exercise, different process are activated to supply the cell with the necessary energy to keep on functioning.
Among the latter mentioned processes, there is anaerobic production of the oxidation of lactate, that does not require oxygen. Other example is the usage of creatine phosphate to obtain energy. Therefore, muscular cells have many ways of obtaining energy, but this secondary mechanisms are only activated in specific situations.
The answer is 3:1.
If we imagine that plant has two alleles for the
trait, we can dominant allele represent with P represents and recessive allele with p. To get purebred monohybrid in the first generation, parents must be a dominant homozygote (PP) and a recessive hetero<span>zygote (pp):
Parental generation: PP x pp
The first generation: Pp Pp Pp Pp
Pp represents a heterozygote.
If we cross these heterozygotes:
The first generation: Pp x Pp
The second generation: PP Pp Pp pp
If dominant allele determines the phenotype, there will be 3 plants (one PP and two Pp) with one phenotype and only 1 plant </span><span>(pp)</span> with another phenotype and vice versa.
Answer:
so they can fly obviously
Answer:
.Mating systems are important to understand because they reflect the result of natural selection on mate choice, and ultimately on strategies for maximizing individual reproductive success
Explanation: