OK to solve this, we have to solve each system presented through elimination or substitution and find which one is equivalent to that of the teacher's!
First let's solve for the teacher's:
-2x+5y=10
-3x+9y=6
Solve by substitution (I think elimination might be easier to do for this one, but I don't really remember 100% sorry!)
Isolate the x (or y) variable in the first equation
-2x+5y=10
-2x=10-5y
Substitute x into the next equation and solve for y
-3(10-5y/2)+9y=6
3*10-5y/2+9y=6
(multiply both sides by 2)
3(10-5y)+18y=12
30-15y+18y=12
30+3y=12
3y=-18
y=-6
Substitute in x
x= -10-5(-6)/2
x=-20
TEACHER'S ANSWER (-20,-6)
GOKU
x-3y=-2
-2x+5y=-7
Do the same as above
Solve for x
x-3y=-2
x=3y-2
Plug in
-2(3y-2)+5y=-7
4-6y+5y=-7
4-y=-7
-y=-11
y=11
x=(3(11)-2)
x=31
GOKU'S ANSWER (31, 11)
SELINA:
-5x+14y=16
-3x+9y=12
One last time!! :)
-5x+14y=16
-5x=16-14y
x=(16-14y)/-5
-3(-(16-14y/5)+9y=12
3*16-14y/5+9y=12
3*16-14y+45y=60
48-42y+45y=60
48+3y=60
3y=12
y=4
x=-(16-14(4))/5
x=8
SELINA'S ANSWER
(8,4)
So neither Goku or Selina got the same answer as the teacher
The answer is <span>subsistence farming you welcome </span>
Answer:
i think 40 meters
Step-by-step explanation:
i hope this helps
Its 23 all you have to do is times all the numbers around
Lets be a price of the calculator - $ a
then , after using the coupon, you need to pay $(a-18)
and after using 15% discount , you need to pay (1-0.15)a=0.85a
then, if
(a-18) will be more than 0.85a, you should prefer 0.15 % discount, because it will be cheaper,
a-18> 0.85a
a-0.85a>18
0.15a > 18
a>120, that means that if the price of the calculator more than $120, 15% discount is better,
but if the price of the calculator is less than $120, you should choose $ 18 coupon.
for example, we have the price of the calculator $100
100-18=82,
100*0.85 =85, coupon is better.
If the price of the calculator $200
200-18=182,
200*0.85=170, so 15% discount is better
if price of the calculator is $120,
120-18=102
120*0.85=102,
it will not matter, what you are going to use, because you are going to pay the same amount of money