Atomic mass iron ( Fe ) = 55.84 a.m.u
55.84 g ------------ 6.02x10²³ atoms
24.0 g ------------- ??
24.0 x ( 6.02x10²³) / 55.84
=> 2.58x10²³ atoms
The products of this reaction between aluminum and sulfuric acid are two: hydrogen and aluminum sulfate.
<h3>What are the products in a reaction?</h3>
This concept refers to the substances obtained at the end of the reaction.
<h3>What does it mean to balance an equation?</h3>
It means to make sure there are the same molecules in the reactants and products.
<h3>What are the products in this reaction?</h3>
- Al + H2SO4 = Al2 (SO4)3 + H2
- Al2 (SO4)3 = Aluminium sulfate
- H = Hydrogen
<h3>What is the balanced equation?</h3>
2Al + 3H2SO4 = Al2 (SO4)3 + 3H2
Learn more about chemical reaction in: brainly.com/question/3461108
To calculate the amount of heat transferred when an amount of reactant is decomposed, we must look at the balanced reaction and its corresponding heat of reaction. In this case, we can see that 252.8 kJ of heat is transferred per 2 moles of CH3OH used. When 22 g of CH3OH is used, 86.9 kJ is absorbed.
Answer:
Water pressure 0.5 atm
Total Pressure= 2.27 atm
Explanation:
To answer this problem, one has to realize that there are two processes that increase the temperature of the sealed vessel.
First, the dry air in the sealed vessel will be heated which will cause its pressure to increase and it can be determined by the equation:
P₁ x T₂ = P₂ x T₁ ∴ P₂ = P₁ x T₂ / T₁
For the second process, we have an amount of n moles of water which will be released when the copper sulfate is heated. In this case, to determine the value of the the water gas we will use the gas law:
PV = nRT ∴ P = nRT/V
n will we calculated from the quantity of sample.
2.50 g CuSo₄ 5H₂O x 1 mol/ 249.69 g = 0.01 mol CuSo₄ 5H₂O
the amount water of hydration is
= 0.01 mol CuSo₄ 5H₂O * 5 mol H₂O / 1 mol CuSo₄ 5H₂O
= 0.05 mo H₂O
pressure of dry air at the final temperature,
P₂ = 1 atm x 500 K/ 300 K = 1.67 atm
Pressure of water :
P (H₂O) 0.05 mol x 0.08206 Latm/kmol x 500 K/ 4 L = 0.5 atm
∴ Total Pressure = 1.67 atm
H2O Pressure = 0.5 atm