1. Millions of gallons of water are wasted by households in America on a yearly basis as a result of wastage of water in the laundry rooms. There are many ways by which water can be conserved in the laundry room, these include:
1. Using a high efficiency washing machine.
2. Choosing the right load sizes and cycles when using washing machines.
3. Wearing clothes more than once before washing them.
4. Collection of grey and rain water.
5. Treat difficult stains before washing them.
2. Using a high efficiency machine will ensure that water is used efficiently. A high efficiency washing machine uses much less water and save about 6,000 gallons of water for an average family on a yearly basis according to Environmental Protection Agency.
Grey water refers to water that have used once. Water that has been used for washing clothes or bathing can be collected again, recycle and use for some household needs such as gardening, flushing of toilet, etc. Water tanks can also be installed to collect rain water which can be used for washing clothes. This will have positive effect on household overall water consumption.
Answer:
Mass of the disk will be 2.976 kg
Explanation:
We have given force F = 45 N
Radius of the disk r = 0.12 m
Angular acceleration
We know that torque
And
So , here I is moment of inertia
So
We know that moment of inertia
So
m = 2.976 kg
Answer:
2.2 x 10-19
Explanation:
Kinetic Energy = 1/2 m v ^2
Velocity=3.4m/sec
Mass=30kg
so kinetic energy=1/2mv^2
=1/2×30×3.4×3.4
=15×3.4×3.4
=15×11.56
=173.4 kg m per second square
For purposes of completing our calculations, we're going to assume that
the experiment takes place on or near the surface of the Earth.
The acceleration of gravity on Earth is about 9.8 m/s², directed toward the
center of the planet. That means that the downward speed of a falling object
increases by 9.8 m/s for every second that it falls.
3 seconds after being dropped, a stone is falling at (3 x 9.8) = 29.4 m/s.
That's the vertical component of its velocity. The horizontal component is
the same as it was at the instant of the drop, provided there is no horizontal
force on the stone during its fall.