<span>vibration of particles decreases as the temperature decreases It also decreases during phase change but temperature does not</span>
Answer:
[EtOH] = 2.2M and Wt% EtOH = 10.1% (w/w)
Explanation:
1. Molarity = moles solute / Volume solution in Liters
=> moles solute = mass solute / formula weight of solute = 9.8g/46g·mol⁻¹ = 0.213mol EtOH
=> volume of solution (assuming density of final solution is 1.0g/ml) ...
volume solution = 9.81gEtOH + 87.5gH₂O = 97.31g solution x 1g/ml = 97.31ml = 0.09731 Liter solution
Concentration (Molarity) = moles/Liters = 0.213mol/0.09731L = 2.2M in EtOH
2. Weight Percent EtOH in solution (assuming density of final solution is 1.0g/ml)
From part 1 => [EtOH] = 2.2M in EtOH = 2.2moles EtOH/1.0L soln
= {(2.2mol)(46g/mol)]/1000g soln] x 100% = 10.1% (w/w) in EtOH.
Answer:
Decreasing the volume of solvent in the solution of molecule A
Explanation:
We know that one of the factors that affect the rate of reaction is the concentration of the reactants. The greater the concentration of reactants, the faster the rate of reaction (the greater the frequency of collision between reactants).
Hence, when we decrease the volume of solvent in the solution of molecule A, the concentration of the solution increases and consequently more particles of molecule A are available to collide with particles of molecule B resulting in a higher rate of reaction.
Answer:
Qp > Kp, por lo tanto, la presión parcial de BrF₃(g) aumenta hasta alcanzar el equilibrio.
Explanation:
Paso 1: Escribir la ecuación balanceada
BrF₃ (g) ⇌ BrF(g) + F₂(g) Kp(T) = 64,0
Paso 2: Calcular el cociente de reacción (Qp)
Qp = pBrF × pF₂ / pBrF₃
Qp = 1,50 × 2,00 / 0,0150 = 200
Paso 3: Sacar una conclusión
Dado que Qp > Kp, la reacción se desplazará hacia la izquierda para alcanzar el equilibrio, es decir, la presión parcial de BrF₃(g) aumenta hasta alcanzar el equilibrio.
Answer: A wave
Explanation:
Because it’s the one that’s cause the new medium to go between the two media.