A rational number is a number that can be expressed as the relationship between two integers. Fractions and decimals will either repeat or end. An example is 5. Maybe 7. 53573 is an example as well. So is 5/1, because 5 and 1 are both integers. so is 7.5, because 7 and 5 are both integers, and it ends (the numbers after the decimal doesn't keep going). Your answer is 7.8, because it ends.
Answer:
-88
Step-by-step explanation:
Let N(x) be the number of students at NMS for a certain number of years.
Let S(x) be the number of students at SMS for a certain number of years.
Let x be the number of years.
N(x)=1240-25x
S(x)=800-30x
When # of students is equal, N(x)=S(x). Therefore, we are looking for the value of x (# of years) when 1240-25x=800-30x
Subtract 1240 from each side
-25x=-440-30x
Add 30x
5x=-400
x=-88 years
Check your numbers.
I don’t see anything. What is the problem.
Answer:
370
Step-by-step explanation:
50 + x = 420
x = 420 - 50
x = 370
Answer:
Step-by-step explanation:
A system of linear equations is one which may be written in the form
a11x1 + a12x2 + · · · + a1nxn = b1 (1)
a21x1 + a22x2 + · · · + a2nxn = b2 (2)
.
am1x1 + am2x2 + · · · + amnxn = bm (m)
Here, all of the coefficients aij and all of the right hand sides bi are assumed to be known constants. All of the
xi
’s are assumed to be unknowns, that we are to solve for. Note that every left hand side is a sum of terms of
the form constant × x
Solving Linear Systems of Equations
We now introduce, by way of several examples, the systematic procedure for solving systems of linear
equations.
Here is a system of three equations in three unknowns.
x1+ x2 + x3 = 4 (1)
x1+ 2x2 + 3x3 = 9 (2)
2x1+ 3x2 + x3 = 7 (3)
We can reduce the system down to two equations in two unknowns by using the first equation to solve for x1
in terms of x2 and x3
x1 = 4 − x2 − x3 (1’)
1
and substituting this solution into the remaining two equations
(2) (4 − x2 − x3) + 2x2+3x3 = 9 =⇒ x2+2x3 = 5
(3) 2(4 − x2 − x3) + 3x2+ x3 = 7 =⇒ x2− x3 = −1