Answer:
- No, this doesn't mean the electric potential equals zero.
Explanation:
In electrostatics, the electric field is related to the gradient of the electric potential V with :
This means that for constant electric potential the electric field must be zero:
This is not the only case in which we would find an zero electric field, as, any scalar field with gradient zero will give an zero electric field. For example:
give an electric field of zero at point (0,0,0)
All the bats living in a cave form a __colony__of bats in the cave ecosystem.
Answer:
Incomplete questions
Let assume we are asked to find
Calculate the induced emf in the coil at any time, let say t=2
And induced current
Explanation:
Flux is given as
Φ=NAB
Where
N is number of turn, N=1
A=area=πr²
Since r=2cm=0.02
A=π(0.02)²=0.001257m²
B=magnetic field
B(t)=Bo•e−t/τ,
Where Bo=3T
τ=0.5s
B(t)=3e(−t/0.5)
B(t)=3exp(-2t)
Therefore
Φ=NAB
Φ=0.001257×3•exp(-2t)
Φ=0.00377exp(-2t)
Now,
Induce emf is given as
E= - dΦ/dt
E= - 0.00377×-2 exp(-2t)
E=0.00754exp(-2t)
At t=2
E=0.00754exp(-4)
E=0.000138V
E=0.138mV
b. Induce current
From ohms laws
V=iR
Given that R=0.6Ω
i=V/R
i=0.000138/0.6
i=0.00023A
i=0.23mA
Answer:
Velocity = 0.5 m/s South (A)
Explanation:
You need to determine the average rate of velocity.
The equation you will use is velocity = displacement/time
The displacement is 30m South.
The time is 60 seconds.
Plug into the equation Velocity = 30m South/60 s
Velocity = 0.5 m/s South
The planet that is the farthest is Neptune, pls make me brainliest:)