Answer:
it would be 10
Step-by-step explanation:
so this is how the table would look bc i can't explain well-
sugar flour
2 3
4 6
6 9
8 12
10 15
don't forget to charge ur computer and i hope this helps!
Answer:
Area: feet²
Perimeter: feet
Step-by-step explanation:
The <u>formula of finding the </u><u>area</u><u> of a rectangle</u> or square is <u>width multiplied by length</u>.
The <u>formula of find the </u><u>perimeter</u><u> of a rectangle</u> or square is <u>width+width+length+length</u>
Area: feet²
Perimeter:
Answer:
The price where the manufacture sells the maximum number of toys is $20
Step-by-step explanation:
The given equation for that represents the number of toys the manufacturer can sell is given as follows;
T = -4·p² + 160·p - 305
Where;
p = The price of the toys in dollars
At the point where the manufacture sells the maxim number of toys on the graph of the equation T = -4·p² + 160·p - 305, which is the top of the graph, the slope = 0
Therefore, at the maximum point;
The slope = 0 = dT/dp = d(-4·p² + 160·p - 305)/dp = -8·p + 160
∴ -8·p + 160 = 0
160 = 8·p
8·p = 160
p = 160/8 = 20
The price where the manufacture sells the maximum number of toys is = p = 20 dollars
Answer:
13/6
Step-by-step explanation:
1 Simplify \sqrt{8}
8
to 2\sqrt{2}2
2
.
\frac{2}{6\times 2\sqrt{2}}\sqrt{2}-(-\frac{18}{\sqrt{81}})
6×2
2
2
2
−(−
81
18
)
2 Simplify 6\times 2\sqrt{2}6×2
2
to 12\sqrt{2}12
2
.
\frac{2}{12\sqrt{2}}\sqrt{2}-(-\frac{18}{\sqrt{81}})
12
2
2
2
−(−
81
18
)
3 Since 9\times 9=819×9=81, the square root of 8181 is 99.
\frac{2}{12\sqrt{2}}\sqrt{2}-(-\frac{18}{9})
12
2
2
2
−(−
9
18
)
4 Simplify \frac{18}{9}
9
18
to 22.
\frac{2}{12\sqrt{2}}\sqrt{2}-(-2)
12
2
2
2
−(−2)
5 Rationalize the denominator: \frac{2}{12\sqrt{2}} \cdot \frac{\sqrt{2}}{\sqrt{2}}=\frac{2\sqrt{2}}{12\times 2}
12
2
2
⋅
2
2
=
12×2
2
2
.
\frac{2\sqrt{2}}{12\times 2}\sqrt{2}-(-2)
12×2
2
2
2
−(−2)
6 Simplify 12\times 212×2 to 2424.
\frac{2\sqrt{2}}{24}\sqrt{2}-(-2)
24
2
2
2
−(−2)
7 Simplify \frac{2\sqrt{2}}{24}
24
2
2
to \frac{\sqrt{2}}{12}
12
2
.
\frac{\sqrt{2}}{12}\sqrt{2}-(-2)
12
2
2
−(−2)
8 Use this rule: \frac{a}{b} \times c=\frac{ac}{b}
b
a
×c=
b
ac
.
\frac{\sqrt{2}\sqrt{2}}{12}-(-2)
12
2
2
−(−2)
9 Simplify \sqrt{2}\sqrt{2}
2
2
to \sqrt{4}
4
.
\frac{\sqrt{4}}{12}-(-2)
12
4
−(−2)
10 Since 2\times 2=42×2=4, the square root of 44 is 22.
\frac{2}{12}-(-2)
12
2
−(−2)
11 Simplify \frac{2}{12}
12
2
to \frac{1}{6}
6
1
.
\frac{1}{6}-(-2)
6
1
−(−2)
12 Remove parentheses.
\frac{1}{6}+2
6
1
+2
13 Simplify.
\frac{13}{6}
6
13
Done