Answer:
0.500 mole of Xe (g) occupies 11.2 L at STP.
General Formulas and Concepts:
<u>Gas Laws</u>
- STP (Standard Conditions for Temperature and Pressure) = 22.4 L per mole at 1 atm, 273 K
<u>Stoichiometry</u>
- Mole ratio
- Dimensional Analysis
Explanation:
<u>Step 1: Define</u>
<em>Identify.</em>
0.500 mole Xe (g)
<u>Step 2: Convert</u>
- [DA] Set up:
- [DA] Evaluate:
Topic: AP Chemistry
Unit: Stoichiometry
Based on location in the periodic table, fluorine (F) has chemical properties that are most similar to iodine.
In the periodic table, elements are classified in groups and periods. The elements in the same group are chemically similar and they have the same number of valence electrons. Elements in the same period have the same highest energy level.
Hence, when looking for an element that is most chemically similar to iodine, we have to consider the element that is in the same group with iodine.
Both fluorine are iodine are both in group 17 hence, fluorine is most chemically similar to iodine.
Learn more: brainly.com/question/11155928
Answer:
c. 2,2-dichloropentane.
Explanation:
Hello there!
In this case, according to the given information, it turns out possible for us to firstly draw the structure of the reactant, pent-1-yne:
Now, we infer the halogen is added to the carbon atom with the most carbon atoms next to it, in this case, carbon #2, in order to write the following product:
Whose name is 2,2-dichloropentane.
Regards!
Answer:
They are strong intermolecular forces
Explanation:
Covalent forces are very strong intermolecular forces. In fact, we can say they are the strongest. This is because several big and giant molecules have covalent bonds holding their molecules together. A good example of this is the buckministerfullerence molecule which contains carbon atom to the order of 60 carbon atoms. It is a very giant molecule and it is covalent bond that is holding the molecules together
The strongest substance in the world is diamond. It is so strong that no other substance can cut it asides another diamond. As strong as it is, the molecule is held together by very strong intermolecular forces of covalent bonds which confers the strength it has on it