no, work is = force * distance or displacement
It will take 267 milliseconds for a sample of radon-218 to decay from 99 grams to 0. 50 grams.
We know that half life of a first order reaction is given by:
where k = rate of reaction
Given half life = 35 milliseconds
So from this we get k = 0.0198
Now we know that rate of first order reaction is given by:
where t= time
R'= initial amount = 99 g
R= final amount= 0.50 g
k= rate of reaction = 0.0198
Putting values of these in above equation we get t=267 milliseconds.
i.e. It will take 267 milliseconds for a sample of radon-218 to decay from 99 grams to 0. 50 grams.
To know more about radioactivity visit:
brainly.com/question/20039004
#SPJ4
Answer:
During a chemical reaction, Bromine (Br) would be expected to <u><em>gain 1 valence electron to have a full octet.</em></u>
Explanation:
In the periodic table the elements are ordered so that those with similar chemical properties are located close to each other.
The elements are arranged in horizontal rows, called periods, which coincide with the last electronic layer of the element. That is, an element with five electronic shells will be in the fifth period.
The columns of the table are called groups. The elements that make up each group coincide in their electronic configuration of valence electrons, that is, they have the same number of electrons in their last.
The elements tend to resemble the closest noble gases in terms of their electronic configuration of the last layer, that is, having eight electrons in the last layer to be stable.
Bromine belongs to group 17 (VII A), which indicates that it has 7 electrons in its last shell. So bromine requires more energy to lose all 7 electrons and generate stability, than it does to gain 1 electron and fill in 8 electrons to be stable. So:
<u><em>During a chemical reaction, Bromine (Br) would be expected to gain 1 valence electron to have a full octet.</em></u>
True
From what Ive learned its like how you create your own hypothesis for a science experiment it may not work completely that way but you learn what didnt work and what does work
Answer:
A.) V = 14 m/s
B.) h = 36.6 m
Explanation:
Given the formula v = √2gh
where g = 9.8m/sec^2 is the acceleration due to gravity.
A.) Determine the impact velocity for an object dropped from a height of 10 m.
Substitute height h in the given formula
V = √2gh
V = √2 × 9.8 × 10
V = √196
V = 14 m/s
b. Determine the height required for an object to have an impact velocity of 26.8 m/sec (~ 60 mph). Round to the nearest tenth of a meter.
Substitute the velocity in the given formula and make height h the subject of formula.
26.8 = √2 × 9.8 × h
Square both sides
718.24 = 19.6h
h = 718.24 / 19.6
h = 36.64 m
h = 36.6 m