They increase across each period, decrease down a group. As you go across a period the number of protons and increases. The positive nucleus then has a stronger attractive force on the electrons so it takes a larger amount of energy to remove an electron. As you go down a group the atoms are larger so the attractive force is weaker and it takes less energy to remove an electron.
Answer:
hr
Explanation:
cfy.uhy.lobhyu444444444,.....xres;iiiiiiiiiiiuxoppppuuusxijnnhsxdrcfvtgbyhnuj
Answer:
FCI=88.0818 MM≅88 MM
Explanation:
Empirical correlation based on the work of Bridgwater and Mumford (1979):
For Liquid or solid phase Plants:
F<60,000 tonne/yr Eq (1)
F≥60,000 tonnes/yr Eq (2)
Where:
N is the number of functional units
F is the process throughput tonnes/yr
In our case F=40,000 tonne/yr <60,000 tonne/yr, We are going to use Eq (1)
F<60,000 tonne/yr
N=8, F=40,000 tonne/yr
FCI=88.0818 MM≅88 MM
Answer:
112.18 g.
Explanation:
you're using stoichiometry to find the mass of the compound S₃O.
The molar mass of a substance/chemical is the mass of the sample substance divided by the amount of substance in that sample.
Explanation:
- In order to calculate the atomic mass of a substance we first obtain the atomic weight of the substance from the periodic table.
- Then we count the number of atoms of the substance and multiply it with the individual atomic mass.
Molar mass of Citric Acid ( H3C6H5O7) is 192.1235 g/mol
It is calculated as :
Molar mass of C₆H₈O₇ = 6(atomic mass of C) + 8(atomic mass of H) + 7(atomic mass of O) = 6(12.0 g/mol) + 8(1.0 g/mol) + 7(16.0 g/mol) = 192.0 g/mol.
Molar mass of baking soda (NaHCO₃) is 84.0 g/mol
Molar mass of NaHCO₃ = (atomic mass of Na) + (atomic mass of H) + (atomic mass of C) + 3(atomic mass of O) = (23.0 g/mol) + (1.0 g/mol) + (12.0 g/mol) + 3(16.0 g/mol) = 84.0 g/mol.