<h2>
Answer: Earth's orbital path around the Sun</h2><h2>
</h2>
The <u>Ecliptic</u> refers to the orbit of the Earth around the Sun. Therefore, <u>for an observer on Earth it will be the apparent path of the Sun in the sky during the year, with respect to the "immobile background" of the other stars.</u>
<u />
It should be noted that the ecliptic plane (which is the same orbital plane of the Earth in its translation movement) is tilted with respect to the equator of the planet about approximately. This is due to the inclination of the Earth's axis.
Hence, the correct option is Earth's orbital path around the Sun.
Answer:
The radius of the disc is 2.098 m.
(e) is correct option.
Explanation:
Given that,
Moment of inertia I = 12100 kg-m²
Mass of disc m = 5500 kg
Moment of inertia :
The moment of inertia is equal to the product of the mass and square of the radius.
The moment of inertia of the disc is given by
Where, m = mass of disc
r = radius of the disc
Put the value into the formula
Hence, The radius of the disc is 2.098 m.
<span>A design is remodeled after analysis and tested again.</span>
Answer: Radiation
Explanation: Radiation is the energy that comes from a source in form of electromagnetic waves, subatomic particles, light, or heat which travels through space.
Examples of radiation include the light, heat, and particles emitted from the Sun.
Using a foil barrier to prevent heat transfer is possible because foil has a silver color, and silver reflects light and heat instead of absorbing them. This is the opposite of black surfaces that absorb heat.
So in homes where these foil reflective barriers are used, the transfer of heat through Radiation is highly reduced.
<h2>
Hello!</h2>
The answer is:
The first option, the walker traveled 360m more than the actual distance between the start and the end points.
Why?
Since each block is 180 m long, we need to calculate the vertical and the horizontal distance, in order to calculate how farther did the travel walk between the start and the end points (displacement).
So, calculating we have:
Traveler:
Actual distance between the start and the end point (displacement):
Now, to calculate how much farter did the traveler walk, we need to use the following equation:
Therefore, we have that distance differnce between the distance covered by the walker and the actual distance is 360m.
Hence, we have that the walker traveled 360m more than the actual distance between the start point and the end point.
Have a nice day!