A two-dimensional net is useful because it flattens the 3-d figure so that you can see all the faces of the figure. You can calculate the area of each face to find the surface area.
Answer: 313% 79% 3%
Step-by-step explanation:
Exponent rule : (a^b)^c = a^(b*c)
31. (x^2)^3 = x^(2 * 3) = x^6
32. (a^7)^5 = a^(7 * 5) = a^35
33. (y^13)^4 = y^(13 * 4) = y^52
34. (w^-21)^-15 = w^(-21*-15) = w^315
35. (5^2)^3 = 5^(2 * 3) = 5^6
36. (23^7)^8 = 23^(7 * 8) = 23^56
37. (-y^5)^4 = -y^(5 * 4) = y^20
38. (4y^3)^2 = 4^2 y^(3 * 2) = 16y^6
39. (8c^5)^2 = 8^2 c^(5 * 2) = 64c^10
40. (-3h^9)^2 = -3^2 h^(9 * 2) = 9h^18
41. (y^4d^6)^3 = y^(4 * 3)d^(6 * 3) = y^12d^18
42. (-15h^9k^7)^3 = -15^3h^(9*3)k^(7*3) = -3375h^27k^21
43. (k^9)^5(k^3)^2 = k(9 * 5)k^(3 * 2) = (k^45)(k^6) = k^51
44. (3y^6)^2 (x^5y^2z) = 3^2y^(6*2)(x^5y^2z) = 9y^12(x^5y^2z) =
9x^5y^14z
45. (4h^3)^2 (-2g^3h)^3 = 4^2h^(3*2) (-2^3g^(3*3)h^3) = 16h^6(-8g^9h^3)
= -128g^9h^9
46. (14a^4b^6)^2 (a^6c^3)^2 = 14^2a^(4*2)b^(6*2) (a^(6*2)c^(3*2) =
196a^8b^12(a^12c^6) = 196a^20b^12c^6
Answer:
D.
Step-by-step explanation:
Graph the line using the slope and y-intercept, or two points.
Slope: −4
y-intercept: (0,4)