Answer:
A change in pH will cause many cellular processes to be disrupted because they affect the biomolecules (protein and nucleic acid) responsible for these processes.
Explanation:
pH refers to the degree of acidity or alkalinity. In a cell, the structures and processes that occur in them are impossible without the biomolecules, which are carbohydrate, protein, lipids and protein.
However, unfavorable conditions like a change in pH can cause the structure of some of these biomolecules to be affected. Proteins are made up of amino acids, which gives them their shape that is peculiar to their functioning. Also, nucleic acids such as DNA are composed of nucleotides responsible for their functioning.
A change in pH will cause the bonds of the protein to be disrupted, hence altering its shape and ultimately its functioning. Likewise, the hydrogen bonds in the DNA will be broken in the presence of a high pH causing the DNA to be dysfunctional.
When these biomolecules are affected, the vital functions that they perform in a cell, which is key to the cell's survival are disrupted) are likewise affected. Therefore, the cell is affected negatively.
Telomeres are protective sequences of nucleotides found at the ends of chromosomes,Which become shorter every time a cell divides.
A gradual degeneration of an organism occurs, resulting in ageing.
However, some cells are able to replenish their telomeres using the enzyme telomerase.
Hope this helps! :)
Answer:
Mutualism is the type of relationship where both of the species benefit from the other.
Answer:
endothermic is the right answer
Mitosis
Involves one cell division?
Results in two daughter cells
Results in diploid? daughter cells? (chromosome? number remains the same as parent cell)
Daughter cells are genetically identical
Occurs in all organisms except viruses
Creates all body cells (somatic?) apart from the germ cells? (eggs and sperm)
Prophase is much shorter
No recombination/crossing over occurs in prophase.
In metaphase individual chromosomes (pairs of chromatids) line up along the equator.
During anaphase the sister chromatids are separated to opposite poles.
Meiosis
Involves two successive cell divisions
Results in four daughter cells
Results in haploid? daughter cells (chromosome number is halved from the parent cell)
Daughter cells are genetically different
Occurs only in animals, plants and fungi
Creates germ cells (eggs and sperm) only
Prophase I takes much longer
Involves recombination/crossing over of chromosomes in prophase I
In metaphase I pairs of chromosomes line up along the equator.
During anaphase I the sister chromatids move together to the same pole.
During anaphase II the sister chromatids are separated to opposite poles.
Similarities
Mitosis
Diploid parent cell
Consists of interphase, prophase, metaphase, anaphase and telophase
In metaphase individual chromosomes (pairs of chromatids) line up along the equator.
During anaphase the sister chromatids are separated to opposite poles.
Ends with cytokinesis.
Meiosis
Diploid parent cell
Consists of interphase, prophase, metaphase, anaphase and telophase (but twice!)
In metaphase II individual chromosomes (pairs of chromatids) line up along the equator.
During anaphase II the sister chromatids are separated to opposite poles.
Ends with cytokinesis.