Answer:
pa heart follow back follow pa brainliest narin po if my answer is correct for you THANK
Explanation:
In an experiment in which molten naphthalene is allowed to cool, the cooling cur...
Question
In an experiment in which molten naphthalene is allowed to cool, the cooling curve in fig 5 was obtained, the temperature
80
∘
<h2>C.</h2>
is known as
Options
A) cooling temperature
B) boiling point
C) melting point √√√√√√√√√√※※※ ↑↑ANSWER
D) vaporization point
Answer:
Incomplete question
The complete question is
A Ferris wheel is a vertical, circular amusement ride with radius 6.0 m. Riders sit on seats that swivel to remain horizontal. The Ferris wheel rotates at a constant rate, going around once in 9.6 s. Consider a rider whose mass is 96 kg.
At the bottom of the ride, what is the rate of change of the rider's momentum?
Explanation:
Radius of wheel is 6m
Rider mass=96kg
He completes one revolution in 9.6s
Let get angular velocity (w)
1 Revolution =2πrad
θ=2πrad
w= θ/t
w=2π/9.6
w=0.654rad/s
Linear speed is give as
v=wr
v=0.654×6
v=3.93m/s
Centripetal acceleration a
a=rw²
a=6×0.654²
a=2.57m/s²
Acceleration due to gravity g=9.81m/s²
According to Newton's second law of motion net force acting on the rider at the bottom of the ride is given by: the two force acting at the bottom is the normal and the weight of the rider
ΣF = ma
N-W=ma
N-mg=ma
N=ma+mg
N=m(a+g)
N=96(2.57+9.81)
N=1188.48 N
Therefore the rate of change of momentum at the bottom of the ride is 1188.48 N.
Explanation: A sneaker is a want because you don't actually need it to survive
If the echo (the reflected sound) reaches your ear less than about
0.1 second after the original sound, your brain doesn't separate them,
and you're not aware of the echo even though it's there.
If the echo comes from, say, a wall, 0.1 second means you'd have to be
about 17 meters away from the wall. If you're closer than that, then the
echo reaches you in less than 0.1 second and you're not aware of it.
A. 30 meters . . .
No. You hear that echo easily
B. you're standing within range of both sounds . . .
No. You hear that echo easily, if you're at least 17 meters from the wall.
C. less than 0.1 second later . . .
That's it. The echo is there but your brain doesn't know it.
D. 21.5 meters
No. You hear that echo easily.