Find the Greatest Common Factor (GCF)
<u>GCF = 6y^6</u>
Factor out the GCF. (Write the GCF first. Then, in parenthesis divide each term by the GCF.)
6y^6(24y^8/6y^6 + 6y^6/6y^6)
Simplify each term in parenthesis
<u>6y^6(4y^2 + 1)</u>
Step-by-step explanation:
i will go you in the bank in co2 in the man
Answer:
<h2>b = 15°</h2>
Step-by-step explanation:
If Pq = RQ then ΔPQR is the isosceles triangle. The angles QPR and PRQ have the same measures.
We know: The sum of the measures of the angeles in the triangle is equal 180°. Therefore we have the equation:
m∠QPR + m∠PRQ + m∠RQP = 180°
We have
m∠QPR = m∠PRQ and m∠RQP = 60°
Therefore
2(m∠QPR) + 60° = 180° <em>subtract 60° from both sides</em>
2(m∠QPR) = 120° <em>divide both sides by 2</em>
m∠QPR = 60° and m∠PRQ = 60°
Therefore ΔPRQ is equaliteral.
ΔPSR is isosceles. Therefore ∠SPR and ∠PRS are congruent. Therefore
m∠SPR = m∠PRS
In ΔAPS we have:
m∠SPR + m∠PRS + m∠RSP = 180°
2(m∠SPR) + 90° = 180° <em>subtract 90° from both sides</em>
2(m∠SPR) = 90° <em>divide both sides by 2</em>
m∠SPR = 45° and m∠PRS = 45°
m∠PRQ = m∠PRS + b
Susbtitute:
60° = 45° + b <em>subtract 45° from both sides</em>
15° = b
Answer:
192
Step-by-step explanation:
To find how many phones are expected to be defective, we need to represent the values in a fraction.
x = number of defective phones
Now we can solve this using algebra.
To get the value of x we need to multiply both sides by 8000 to leave x alone.
So around 192 cell phones are expected to be defective out of 8000 phones.
The average daily cost is $7.02.
to get the average cost you add up all the prices
7.75
7.75
6.30
6.30
+7.00
35.10
then you divide that by the amount of numbers you have
35.10 / 5=7.02
then there's your answer.