Answer:
It doesn’t really relate
Explanation:
heavier load the parachute must be moving faster to match the downward force of the greater load
and approx terminal velocity when the parachute is open
velocity for Ping pong ball with parachute = 9m/s
velocity for Soccer ball with parachute = 15m/s
velocity for Golf ball with parachute =24m/s
velocity for Watermelon with parachute = 25m/s
so weight of an object doesn’t really realted how fast it falls with a parachute
Answer:
-1.24 m/s
Explanation:
Total momentum before collision = total momentum after collision
Total momentum before collision = (mass of full back * velocity of fullback) + (mass of lineman * velocity of line man).
Mass of full back = 112 kg, mass of line bag = 120 kg, velocity of full back 6 m/s (east), velocity of line back = -8 m/s (west). Hence:
Total momentum before collision = (112 * 6) + (120 * -8) = 672 - 960 = -288 kgm/s
The total momentum after collision = (mass of full back + mass of line back) * velocity after collision.
Let velocity after collision be v, hence:
The total momentum after collision = (112 + 120)v = 232v
Total momentum before collision = total momentum after collision
-288 = 232v
v = -288 / 232
v = -1.24 m/s
Therefore after collision, the two players would move at a velocity 1.24 m/s west (the same direction as the lineman).
Answer: D. Acceleration of Object A is twice of that of the acceleration of Object B.
Answer:
d. Potential energy is converted to kinetic energy; the kinetic energy is then converted into the work of bringing the body to a stop.
Explanation:
- At the beginning of the falls, when the person is still at a certain height h, the person has gravitational potential energy:
U = mgh
where m is the mass of the person, g the acceleration due to gravity, h the height above the ground.
- As the person falls down, h decreases, so the potential energy decreases; according to the law of conservation of energy, potential energy is converted into kinetic energy, since the speed of the person increases:
where v is the speed.
- Just before hitting the ground, all the potential energy has been converted into kinetic energy
- When the person hits the ground, he/she comes to a stop: so work is done by the ground on the person, because the ground applied a force required to stop the person, and the kinetic energy "lost" by the person is equal to the work done by the ground to bring the body to a stop.