B is the answer...
mark brainliest
Answer:
Speed of cart's might be less than the high speed after 5 seconds.
Explanation:
Given that,
A fan cart with the fan set to high rolled across the floor.
Let the speed of fan cart with set to high is per second.
The fan supplies a force to the cart. If a lower fan speed were used, less force would be applied. This would cause a slower change in the cart's speed. So, the cart would be rolling more slowly than per second after 5 seconds. The speed of cart's might be less than per second.
Force is needed
A. for a moving object to keep moving at the same speed and direction
B. for a moving object to change its speed
C. for a motionless object to remain still
D. to prevent a moving object from turning
Hence,
Speed of cart's might be less than the high speed after 5 seconds.
Answer:
w = √[g /L (½ r²/L2 + 2/3 ) ]
When the mass of the cylinder changes if its external dimensions do not change the angular velocity DOES NOT CHANGE
Explanation:
We can simulate this system as a physical pendulum, which is a pendulum with a distributed mass, in this case the angular velocity is
w² = mg d / I
In this case, the distance d to the pivot point of half the length (L) of the cylinder, which we consider long and narrow
d = L / 2
The moment of inertia of a cylinder with respect to an axis at the end we can use the parallel axes theorem, it is approximately equal to that of a long bar plus the moment of inertia of the center of mass of the cylinder, this is tabulated
I = ¼ m r2 + ⅓ m L2
I = m (¼ r2 + ⅓ L2)
now let's use the concept of density to calculate the mass of the system
ρ = m / V
m = ρ V
the volume of a cylinder is
V = π r² L
m = ρ π r² L
let's substitute
w² = m g (L / 2) / m (¼ r² + ⅓ L²)
w² = g L / (½ r² + 2/3 L²)
L >> r
w = √[g /L (½ r²/L2 + 2/3 ) ]
When the mass of the cylinder changes if its external dimensions do not change the angular velocity DOES NOT CHANGE
Precisely around 1,800 miles below.