Answer:
12 L of 40% sulfuric acid solution and 8 L of 10% sulfuric acid solution are needed to make 20 L of sulfuric acid solution.
Explanation:
For first solution of sulfuric acid :
C₁ = 40% , V₁ = ?
For second solution of sulfuric acid :
C₂ = 10% , V₂ = ?
For the resultant solution of sulfuric acid:
C₃ = 28% , V₃ = 20L
Also,
<u>V₁ + V₂ = V₃ = 20L</u> ......................................(1)
Using
<u>C₁V₁ + C₂V₂ = C₃V₃</u>
<u>40×V₁ + 10×V₂ = 28×20</u>
So,
40V₁ + 10V₂ = 560........................................(2)
Solving 1 and 2 as:
V₂ = 20 - V₁
Applying in 2
40V₁ + 10(20 - V₁) = 560
40V₁ + 200 - 10V₁ = 560
30V₁ = 360
<u>V₁ = 12 L</u>
So,
<u>V₂ = 20 - V₁ = 8L</u>
<u><em>12 L of 40% sulfuric acid solution and 8 L of 10% sulfuric acid solution are needed to make 20 L of sulfuric acid solution.</em></u>
T₁ = 50,14 K.
p₁ = 258,9 torr.
T₂ = 161,2 K.
p₂ = 277,5 torr.
R = 8,314 J/K·mol.
Using Clausius-Clapeyron equation:
ln(p₁/p₂) = - ΔHvap/R · (1/T₁ - 1/T₂).
ln(258,9 torr/277,5 torr) = -ΔHvap/8,314 J/K·mol · (1/50,14 K - 1/161,2 K).
-0,069 = -ΔHvap/8,314 J/K·mol · (0,0199 1/K - 0,0062 1/K).
0,0137·ΔHvap = 0,573 J/mol.
ΔHvap = 41,82 J.
The equation that correctly represent the reaction for formation of ammonia is
N2+ 3H2 → 2NH3 (answer D)
1 mole of nitrogen gas (N2) react with 3 moles of hydrogen gas (H2) to form 2 moles of ammonia ( NH3). This is in a process known as haber process were iron is used as a catalyst and reaction take place that a higher temperature and pressure. The process is exothermic hence energy is released.
CaBr₃ = 40 + 80 * 3 = 280 g/mol
hope this helps!
This is because iodine is nonpolar. You also saw that the iodine was less soluble inethanol and acetone than it was in carbon tetrachloride. Ethanoland acetone are more polar thancarbon tetrachloride. Iodine was more soluble in them than it was in water because they are less polar than water.