P1V1 = P2V2
P1 = 720 mmHg
V1 = 450. mL
P2 = 760 mmHg (this is the pressure at STP)
Use these to solve for V2:
(720)(450) = 760V2
V2 = 426 mL
Answer:
The largest bays have developed as a result of continental drift. With the loss of either of these, continental drift will come to a halt
Explanation:
Answer:
When you place the north pole of one magnet near the south pole of another magnet, they are attracted to one another.
Explanation:
Answer:
The equipments you should have ready to start the crucible experiment includes: safety goggles, crucible with lid, crucible tong, ring support with clay triangle, Bunsen burner and heat resistant tile.
Explanation:
Crucible is an equipment in the laboratory which is suitable for heating a sample to extreme heat over a flame, Modern laboratory crucible are made up of graphite- based composite materials for achievement of higher performance. Because extreme heat is involved, you should locate the correct labware for the experiment, including the equipment to safely handle and support the crucible. These equipments includes:
--> Safety goggles: Because you will work with chemical it is advisable to use a safety goggles which protects the eyes from dangerous floating chemical aerosol.
--> crucible with lid: This is the main apparatus with the lid (cover) which is used to cover the crucible to prevent spilling of the boiling chemical.
--> Crucible tong: These are scissors like tools used to grasp hot crucible.
--> Ring support with clay triangle: the clay triangle is used to hold crucible when they are being heated. They usually sit on a ring stand.
--> Bunsen burner: Produces a single open gas flame which can be used for heating.
With the safety equipments listed above, you can carry out experiment using the crucible. These equipments helps minimise laboratory hazard that may occur should Incase it's not available.
<u>Answer:</u> The freezing point of solution is 2.6°C
<u>Explanation:</u>
To calculate the depression in freezing point, we use the equation:
Or,
where,
=
Freezing point of pure solution = 5.5°C
i = Vant hoff factor = 1 (For non-electrolytes)
= molal freezing point depression constant = 5.12 K/m = 5.12 °C/m
= Given mass of solute (anthracene) = 7.99 g
= Molar mass of solute (anthracene) = 178.23 g/mol
= Mass of solvent (benzene) = 79 g
Putting values in above equation, we get:
Hence, the freezing point of solution is 2.6°C