First you should know that there is seven oxygen atoms in one Mn2O7
So
2.00 moles of Mn2O7 contain 14.00 moles of oxygen...
Then you multiply this no. with Avagadro no....
from formula
Number of moles= no. of particles/avagadro's no..
14.00×6.02×10²³=84.28 atoms of oxygen...
Answer:
The resulting pressure is 2.81 atm
Explanation:
According to Dalton's Law of Partial Pressure, each of the gases (A and B) will exert their pressure independently. If we use Boyle's Law to calculate the pressure of each of the gases separately we have:
Pressure of gas A:
p1V1 = p2V2
p1 = 2.4 atm
V1 = 722 mL
V2 = 722 + 169 = 891 mL
p2 =?
Clearing p2:
p2 = (p1V1)/V2 = (2.4*722)/891 = 1.94 atm
Pressure of gas B:
p1 = 4.6 atm
V1 = 169 mL
V2 = 169+722 = 891 mL
p2=?
Clearing p:
p2 = (4.6*169)/891 = 0.87 atm
Dalton's expression for total partial pressures is equal to:
ptotal = pA + pB = 1.94+0.87 = 2.81 atm
Rf value is the ratio of the distance traveled by the solute to that of the solvent front on the paper used in chromatographic separation.
From the image it is clear the distance traveled by solvent front = 7.3 cm
Distance traveled by the component -1 of the mixture = 1.4 cm
Distance traveled by the component -2 of the mixture = 3.0 cm
Distance traveled by the component -3 of the mixture = 4.5 cm
Distance traveled by the component -4 of the mixture = 6.5 cm
Rf value of component-1 =
Rf value of component-2 =
Rf value of component-3 =
Rf value of component-4 =
b) Samples can be separated from a mixture using chromatography as the relative affinities for the compounds towards the paper (stationary phase) and the solvent(mobile phase) are different. Each component spends different amounts of time on the stationary phase depending on it chemical nature. So, the components in a mixture can be separated based on their polarities and relative degrees of adsorption on the stationary phase.
Answer:
A
Explanation:
The mass number (represented by the letter A) is defined as the total number of protons and neutrons in an atom. Consider the table below, which shows data from the first six elements of the periodic table. Consider the element helium. Its atomic number is 2, so it has two protons in its nucleus.