Answer:
a= 0.5m/s^2
Explanation:
Force applied on an object is known as
F=m.a (Newton's second law states it)
a=F/m
a=5/10=0.5m/s^2
Given parameters:
Initial velocity of Coin = 0m/s
Time taken before coin hits ground = 5.7s
Unknown:
Final velocity of the coin = ?
Velocity is displacement with time. To solve this problem, we have to apply one of the equations of motion.
The fitting one of them here is shown below;
V = U + gt
where;
V is the final velocity
U is the initial velocity
g is the acceleration due to gravity
t is the time taken
Here we use positive value of acceleration due to gravity because the coin is falling with the effect of acceleration and not against it.
Now input the parameters and solve;
V = 0 + 9.81 x 5.7
V = 55.917m/s
Therefore, the final velocity is 55.917m/s.
Answer:
Explanation:
Speed is defined as the rate at which an object covers a particular distance. So the formula for determining speed is given as the ratio of distance to time taken for covering that distance.
Speed = Distance/Time
As here the distance is given in km units and time in s units, so the units of any one parameter should be changed. Since we know that speed of sound is always about 300 m/s. So it is better to convert the unit of distance from km to m.
Hence, now the distance traveled by the noise is 2000 m and time taken is 5.8 s.
So the speed of noise = Distance/Time = 2000/5.8=345 m/s.
Thus, the speed of noise is slightly greater than the speed of sound and it is found to be 345 m/s.