Answer:
D 99.387%
Step-by-step explanation:
100,000 - 613 = 99,387
99387 / 100,000 is the chance
Answer:
1. Three things influence the margin of error in a confidence interval estimate of a population mean: sample size, variability in the population, and confidence level. For each of these quantities separately, explain briefly what happens to the margin of error as that quantity increases.
Answer: As sample size increases, the margin of error decreases. As the variability in the population increases, the margin of error increases. As the confidence level increases, the margin of error increases. Incidentally, population variability is not something we can usually control, but more meticulous collection of data can reduce the variability in our measurements. The third of these—the relationship between confidence level and margin of error seems contradictory to many students because they are confusing accuracy (confidence level) and precision (margin of error). If you want to be surer of hitting a target with a spotlight, then you make your spotlight bigger.
7. You are finding the area of the box. Not the cube, just a surface. Length times width of the surface. Eliminate other numbers and multiply
24.5×19.5
then
26×24.5
8. You are doing the same thing almost. Word problems are scary, but look for the numbers.
4inch ×8inch × 12inch
Find the volume
Multiply the volume by 3, that'd one answer
Devide the ORIGINAL volume by 2. don't divide the volume you multiplied by 3.
Answer:
B) The maximum y-value of f(x) approaches 2
C) g(x) has the largest possible y-value
Step-by-step explanation:
f(x)=-5^x+2
f(x) is an exponential function.
Lim x→∞ f(x) = Lim x→∞ (-5^x+2) = -5^(∞)+2 = -∞+2→ Lim x→∞ f(x) = -∞
Lim x→ -∞ f(x) = Lim x→ -∞ (-5^x+2) = -5^(-∞)+2 = -1/5^∞+2 = -1/∞+2 = 0+2→
Lim x→ -∞ f(x) = 2
Then the maximun y-value of f(x) approaches 2
g(x)=-5x^2+2
g(x) is a quadratic function. The graph is a parabola
g(x)=ax^2+bx+c
a=-5<0, the parabola opens downward and has a maximum value at
x=-b/(2a)
b=0
c=2
x=-0/2(-5)
x=0/10
x=0
The maximum value is at x=0:
g(0)=-5(0)^2+2=-5(0)+2=0+2→g(0)=2
The maximum value of g(x) is 2