Mechanical advantage is defined as the ratio of output load to the input load. The mechanical advantage of the machine will be 0.1.
<h3>What is
mechanical advantage?</h3>
Mechanical advantage is a measure of the ratio of output force to input force in a system,
It is used to obtain the efficiency of forces in levers and pulleys. It is an effective way of amplifying the force in simple machines like levers.
The theoretical mechanical advantage is defined as the ratio of the force responsible for the useful work in the system to the applied force.
Given
applied force = 250 N
Output force = 25
Mechanical advantage = work output / work input
Hence the mechanical advantage of the machine will be 0.1
To learn more about the mechanical advantage refer to the link;
brainly.com/question/7638820
Answer:
The deflection of the spring is 34.56 mm.
Explanation:
Given that,
Diameter = 10 mm
Number of turns = 10
Load = 200 N
We need to calculate the deflection
Using formula of deflection
Put the value into the formula
Hence, The deflection of the spring is 34.56 mm.
Make the base of the building zero. Then the initial distance is 100m, final distance unknown x. Use gravity, time and initial velocity to solve for final distance.
x - 100 = (0)(5) +(1/2)(-9.81)(5^2)
x - 100 = 0 - 122.625
x = -122.625 + 100
x = -22.625 m below ground