<u>Answer:</u> The atomic symbol of the given element is
<u>Explanation:</u>
The general isotopic representation of an element is given as:
where,
Z represents the atomic number of the element
A represents the mass number of the element
X represents the symbol of an element
For the given isotope: 130-iodine
Mass number = 130
Atomic number = 53
Hence, the atomic symbol of the given element is
Answer:
Option B. 3.0 M
Explanation:
From the question given above, the following data were obtained:
Volume of solution = 3.0 L
Mole of MgCl₂ = 9 moles
Molarity =?
Molarity can simply be defined as the mole of solute per unit litre of the solution. Mathematically, it can be expressed as:
Molarity = mole of solute /Volume of solution
With the above formula, we can obtain the molarity of the solution as follow:
Volume of solution = 3.0 L
Mole of MgCl₂ = 9 moles
Molarity =?
Molarity = mole of solute /Volume of solution
Molarity = 9 / 3
Molarity = 3 mol/L = 3.0 M
Thus, the molarity of the solution is 3 M
Explanation:
Given -
- An organic compound gives H₂ gas with Na
- On treatment with alkaline iodine it gives yellow ppt.
- On oxidation with CrO₃/H⁺ forms an aldehyde (C₂H₄O)
To Find -
- Name the compound and write the reaction involved
Now,
Let A be the organic compound.
Then,
- A + Na → + H₂↑
- A + I₂ → CHI₃ (yellow ppt.)
- A + CrO₃ + H⁺ → C₂H₄O
Now,
Here we see that compound A reacts with chromic oxide (CrO₃) in the presence of acidic medium gives aldehyde.
- Functional group of aldehyde = —CHO
And It forms only 2 Carbon aldehyde it means, It is Ethanal (CH₃CHO).
Compound A reacts with chromic oxide (CrO₃) in the presence of acidic medium gives ethanal.
It means,
We know that 1° alcohol on oxidation gives aldehyde.
Here it gives 2 Carbon aldehyde.
It means,
Here 2 Carbon and 1° alcohol is used.
Now,
Its cleared that Compound A is Ethanol.
Reaction Involved -
- CH₃CH₂OH + Na → CH₃CH₂O⁻Na⁺ + H₂↑
- CH₃CH₂OH + I₂ + OH⁻ → CHI₃↓ + HCOO⁻ + HI + H₂O
- CH₃CH₂OH + CrO₃ + H⁺ → CH₃CHO
Answer:
-0.050 kJ/mol.K
Explanation:
- A certain reaction is thermodynamically favored at temperatures below 400. K, that is, ΔG° < 0 below 400. K
- The reaction is not favored at temperatures above 400. K, that is. ΔG° > 0 above 400. K
All in all, ΔG° = 0 at 400. K.
We can find ΔS° using the following expression.
ΔG° = ΔH° - T.ΔS°
0 = -20 kJ/mol - 400. K .ΔS°
ΔS° = -0.050 kJ/mol.K
Answer:
i will do it brainlist plz
Explanation: