Answer:
600 minutes
Step-by-step explanation:
If we write both situations as an equation, we get:
y1 = 24 + 0.15x
<em>y1 </em><em>:</em><em> </em><em>total </em><em>cost </em><em>paid </em><em>in </em><em>first </em><em>plan</em>
<em>x </em><em>:</em><em> </em><em>total minutes </em><em>of </em><em>calls</em>
y2 = 0.19x
<em>y2 </em><em>:</em><em> </em><em>total </em><em>cost </em><em>in </em><em>second </em><em>plan</em>
<em>x:</em><em> </em><em>total </em><em>min</em><em>utes </em><em>of </em><em>call</em>
We are now looking for the situation where the total cost in the two plans is equal, so
y1 = y2
this gives
24 + 0.15x = 0.19x
<=> 0.04x = 24
<=> x = 600
Step-by-step explanation:
4x + 2xy=
4×4 + 2×4×-3
= 16 + (-24)
= - 8
The answer would be B and here’s the steps :)
Your answers we equal to 22