Answer:
correct option is a. True
Explanation:
solution
the noise floor is AWGN ( additive white Gaussian noise )
and when viewed in the frequency domain, it is the continuous noise level
because as they have a uniform power over all the frequency.
so that it is additive white Gaussian noise
as we can say given statement is True
correct option a true
252-364 licks
I'm not sure if it's correct or not
Answer:
W=1055N
Explanation:
In order to solve this problem, we must first do a drawing of the situation so we can visualize theh problem better. (See attached picture)
In this problem, we will ignore the board's weight. As we can see in the free body diagram of the board, there are only three forces acting on the system and we can say the system is in vertical equilibrium, so from this we can say that:
so we can do the sum now:
when solving for the Weight W, we get:
and now we can substitute the given data, so we get:
W=410N+645N
W=1055N
Answer:
<h2><em>
12.45eV</em></h2>
Explanation:
Before calculating the work function, we must know the formula for calculating the kinetic energy of an electron. The kinetic energy of an electron is the taken as the difference between incident photon energy and work function of a metal.
Mathematically, KE = hf - Ф where;
h is the Planck constant
f is the frequency = c/λ
c is the speed of light
λ is the wavelength
Ф is the work function
The formula will become KE = hc/λ - Ф. Making the work function the subject of the formula we have;
Ф = hc/λ - KE
Ф = hc/λ - 1/2mv²
Given parameters
c = 3*10⁸m/s
λ = 97*10⁻⁹m
velocity of the electron v = 3.48*10⁵m/s
h = 6.62607015 × 10⁻³⁴
m is the mass of the electron = 9.10938356 × 10⁻³¹kg
Substituting the given parameters into the formula Ф = hc/λ - 1/2mv²
Ф = 6.63 × 10⁻³⁴*3*10⁸/97*10⁻⁹ - 1/2*9.11*10⁻³¹(3.48*10⁵)²
Ф = 0.205*10⁻¹⁷ - 4.555*10⁻³¹*12.1104*10¹⁰
Ф = 0.205*10⁻¹⁷ - 55.163*10⁻²¹
Ф = 0.205*10⁻¹⁷ - 0.0055.163*10⁻¹⁷
Ф = 0.1995*10⁻¹⁷Joules
Since 1eV = 1.60218*10⁻¹⁹J
x = 0.1995*10⁻¹⁷Joules
cross multiply
x = 0.1995*10⁻¹⁷/1.60218*10⁻¹⁹
x = 0.1245*10²
x = 12.45eV
<em>Hence the work function of the metal in eV is 12.45eV</em>