Answer:
d' = 75.1 cm
Explanation:
It is given that,
The actual depth of a shallow pool is, d = 1 m
We need to find the apparent depth of the water in the pool. Let it is equal to d'.
We know that the refractive index is also defined as the ratio of real depth to the apparent depth. Let the refractive index of water is 1.33. So,
or
d' = 75.1 cm
So, the apparent depth is 75.1 cm.
Answer: hydroelectric power is generated from moving water
Explanation: hydroelectric power is generated from moving water
Walt and Mary are my Customers at this point.
To construct proper client relationships you need to: greet clients and approach them in a way that is herbal and suits the character scenario. show customers that you recognize what their desires are. be given that a few humans may not want your merchandise and concentrate on constructing relationships with people who do.
Use the time period clients, with an apostrophe before the “s” to expose a possessive form for a single consumer. Use the time period clients', with an apostrophe after the “s” to show the possessive plural shape of a couple of patrons. Do now not use an apostrophe if there's no possessive indication needed.
The definition of a consumer is a person who buys services or products from a store, restaurant, or different retail vendor. An example of a patron is someone who is going to an electronics save and buys a tv. (Casual) a person, mainly one engaging in a few types of interaction with others.
Learn more about the Customers herehttps://brainly.com/question/24448358
#SPJ1
Answer: 16.3 seconds
Explanation: Given that the
Initial velocity U = 80 ft/s
Let's first calculate the maximum height reached by using third equation of motion.
V^2 = U^2 - 2gH
Where V = final velocity and H = maximum height.
Since the toy is moving against the gravity, g will be negative.
At maximum height, V = 0
0 = 80^2 - 2 × 9.81 × H
6400 = 19.62H
H = 6400/19.62
H = 326.2
Let's us second equation of motion to find time.
H = Ut - 1/2gt^2
Let assume that the ball is dropped from the maximum height. Then,
U = 0. The equation will be reduced to
H = 1/2gt^2
326.2 = 1/2 × 9.81 × t^2
326.2 = 4.905t^2
t^2 = 326.2/4.905
t = sqrt( 66.5 )
t = 8.15 seconds
The time it will take for the rocket to return to ground level will be 2t.
That is, 2 × 8.15 = 16.3 seconds
Use kinematic equations to solve:
1) yf = yo + vo*t + 1/2at²
yf = final height
yo = initial height
vo = initial velocity
a = acceleration
t = time
yf - yo = vo*t + 1/2at²
yf - yo = h
vo = 0
Thus,
h = 1/2at²
h = 1/2(9.8)(12)² = 705.6 m
2) vf = vo + at
vo = 0
Thus,
vf = at
vf = (9.8)(12) = 117.6 m/s