About a mil sience 2014-2015
Answer:
The maximum energy stored in the combination is 0.0466Joules
Explanation:
The question is incomplete. Here is the complete question.
Three capacitors C1-11.7 μF, C2 21.0 μF, and C3 = 28.8 μF are connected in series. To avoid breakdown of the capacitors, the maximum potential difference to which any of them can be individually charged is 125 V. Determine the maximum energy stored in the series combination.
Energy stored in a capacitor is expressed as E = 1/2CtV² where
Ct is the total effective capacitance
V is the supply voltage
Since the capacitors are connected in series.
1/Ct = 1/C1+1/C2+1/C3
Given C1 = 11.7 μF, C2 = 21.0 μF, and C3 = 28.8 μF
1/Ct = 1/11.7 + 1/21.0 + 1/28.8
1/Ct = 0.0855+0.0476+0.0347
1/Ct = 0.1678
Ct = 1/0.1678
Ct = 5.96μF
Ct = 5.96×10^-6F
Since V = 125V
E = 1/2(5.96×10^-6)(125)²
E = 0.0466Joules
Answer:
Velocity = 4.33[m/s]
Explanation:
The total energy or mechanical energy is the sum of the potential energy plus the kinetic energy, as it is known the velocity and the height, we can determine the total energy.
All this energy will become kinetic energy and we can find the velocity.
The answer is the last one
Answer:
12 Neutrons
Explanation:
So the mass of sodium is 22.990. You round it up to get 23(as stated in the problem). So, <em>what exactly is atomic mass?</em>
Atomic Mass is the total amount of neutrons and protons added up to form a total mass. So when you subtract 23-11 you get 12 Neutrons.
<u>Tip: </u>Don't know if you need this but-
The neutrons and protons are typically close in number (unless it's an isotope). So say that you subtract and the numbers of protons and neutrons aren't close at all. Well if that's the case, it's probably wrong.
hope this helps!!