<span>Standard deviation is defined as the quantity which expresses by how much the members of a group is different from the mean value for the group.
</span>
The sample standard deviation with a <span>sample variance of hourly wages 10 will be $3.16.
Explanation:
</span><span>The standard deviation is the square root of the variance.
Therefore,
The square root of 10 dollars can be calculated as:
</span>√10 = $3.16
Answer:
It doesn't. x = 22 271 201
Step-by-step explanation:
You are going to need a calculator no matter how you do it.
(a) The direct method
(b) The indirect method
This problem can be readily solved if we are familiar with the point-slope form of straight lines:
y-y0=m(x-x0) ...................................(1)
where
m=slope of line
(x0,y0) is a point through which the line passes.
We know that the line passes through A(3,-6), B(1,2)
All options have a slope of -4, so that should not be a problem. In fact, if we check the slope=(yb-ya)/(xb-xa), we do find that the slope m=-4.
So we can check which line passes through which point:
a. y+6=-4(x-3)
Rearrange to the form of equation (1) above,
y-(-6)=-4(x-3) means that line passes through A(3,-6) => ok
b. y-1=-4(x-2) means line passes through (2,1), which is neither A nor B
****** this equation is not the line passing through A & B *****
c. y=-4x+6 subtract 2 from both sides (to make the y-coordinate 2)
y-2 = -4x+4, rearrange
y-2 = -4(x-1)
which means that it passes through B(1,2), so ok
d. y-2=-4(x-1)
this is the same as the previous equation, so it passes through B(1,2),
this equation is ok.
Answer: the equation y-1=-4(x-2) does NOT pass through both A and B.
Answer with Step-by-step explanation:
Let A is non-singular
We have to prove that is unique.
Suppose B and C are inverse of A such that
and AC=I
By using property
Hence, the inverse of A is unique.