Answer:
The spring constant = 104.82 N/m
The angular velocity of the bar when θ = 32° is 1.70 rad/s
Explanation:
From the diagram attached below; we use the conservation of energy to determine the spring constant by using to formula:
Also;
Thus;
where;
= deflection in the spring
k = spring constant
b = remaining length in the rod
m = mass of the slender bar
g = acceleration due to gravity
Thus; the spring constant = 104.82 N/m
b
The angular velocity can be calculated by also using the conservation of energy;
Thus, the angular velocity of the bar when θ = 32° is 1.70 rad/s
Water and h20 delivery have been a very meaningful company to the community
Answer:
12.5 m/s
Explanation:
From the question given above, the following data were obtained:
Initial velocity (u) = 0 m/s
Height (h) = 8 m
Final velocity (v) at 8 m above the lowest point =?
NOTE: Acceleration due to gravity (g) = 9.8 m/s²
The velocity of the roller coaster at 8 m above the lowest point can be obtained as follow:
v² = u² + 2gh
v² = 0² + (2 × 9.8 × 8)
v² = 0 + 156.8
v² = 156.8
Take the square root of both side
v = √156.8
v = 12.5 m/s
Therefore, the velocity of the roller coaster at 8 m above the lowest point is 12.5 m/s.
Correct option is=A
because 25mph means=25miles per hour
the question was a football is kicked at ground level with a speed of 32 m/s the an angle of 40 degrees to the horizontal how much later does it hit the ground probably like 30 more or 40 sense it was around 32