I found a website called Socratic message me and I will tell you
Kinetic energy is a result of mass in motion at a certain velocity.
<span>1 Joule = 1 kg • (m/s)<span>2
</span></span>the force as a function of mass of the object.
Answer:
(a) 3107.98 J
(b) 14530.6 J
Explanation:
mass, m = 3.56 kg
angular speed, ω = 179 rad/s
Moment of inertia of solid cylinder, I = 1/2 mr^2
where, m is the mass and r be the radius of the cylinder.
(a) radius, r = 0.330 m
I = 0.5 x 3.56 x 0.330 x 0.330 = 0.194 kgm^2
The formula for the rotational kinetic energy is given by
K = 0.5 x 0.194 x 179 x 179 = 3107.98 J
(b) radius, r = 0.714 m
I = 0.5 x 3.56 x 0.714 x 0.714 = 0.907 kgm^2
The formula for the rotational kinetic energy is given by
K = 0.5 x 0.907 x 179 x 179 = 14530.6 J
Answer:
w = 3.2 rev / min
Explanation:
For this exercise we will use the centrine acceleration equal to the acceleration of gravity
a = v² / r
Angular and linear variables are related.
v = w r
Let's replace
a = w² r = g
w = √ g / r
r = d / 2
r = 175/2 = 87.5 m
w = √( 9.8 / 87.5)
w = 0.3347 rad / s
Let's reduce to rotations per min
w = 0.3347 rad / s (1 rov / 2pi rad) (60 s / 1 min)
w = 3.2 rev / min
Suppose the space station rotates counterclockwise, we have two possibilities for the car
The first car turns counterclockwise (same direction of the station
= r
[texwv_{c}[/tex] = / r
[texwv_{c}[/tex] = 25.0 / 87.5
[texwv_{c}[/tex] = 0.286 rad / s
When the two rotate in the same direction their angular speeds are subtracted
w total = w -[texwv_{c}[/tex]
w total = 0.3347 - 0.286
w total= 0.487 rad / s
The car goes in the opposite direction of the station the speeds add up
w = 0.3347 + 0.286
w = 0.62 rad / s
From this values we can see that the person feels a variation of the acceleration of gravity, feels that he has less weight when he goes in the same direction of the season and that his weight increases when he goes in the opposite direction to the season.
B is the answer
Explanation: look at the graph