Answer:
6 3/8 inches (6.375 inches)
Step-by-step explanation:
For simplicity we'll assume that both the photo and the poster board are square. To determine the width of the border, subtract 8.5 inches from the poster board width 21.25 inches, obtaining 12.75 inches, and then divide that 12.75 inches by 2: 6.375 inches (6 3/8 inches).
Set the photo 6 3/8 inches from each edge of the poster board.
Which one do you need help with?
In the parallelogram ABCD, join BD.
Consider the triangle Δ ABD.
It is given that AB > AD.
Since, in a triangle, angle opposite to longer side is larger, we have,
∠ ADB > ∠ ABD. --- (1)
Also, AB || DC and BD is a transversal.
Therefore,
∠ ABD = ∠ BDC
Substitute in (1), we get,
∠ ADB > ∠ BDC.
36x² - 100 = 4(9x²-25) = 4(3x+5)(3x-5)
B. 4(3x+5)(3x-5)
X is a unknown
Number you need to find what the total of all the angles will be and the solve for x