Entropy is an extensive property of a thermodynamic system. It quantifies the number Ω of microscopic configurations (known as microstates) that are consistent with the macroscopic quantities that characterize the system (such as its volume, pressure and temperature).[1] Under the assumption that each microstate is equally probable, the entropy
S
S is the natural logarithm of the number of microstates, multiplied by the Boltzmann constant
Answer:
Explanation:
Potential energy on the surface of the earth
= - GMm/ R
Potential at height h
= - GMm/ (R+h)
Potential difference
= GMm/ R - GMm/ (R+h)
= GMm ( 1/R - 1/ R+h )
= GMmh / R (R +h)
This will be the energy needed to launch an object from the surface of Earth to a height h above the surface.
Extra energy is needed to get the same object into orbit at height h
= Kinetic energy of the orbiting object at height h
= 1/2 x potential energy at height h
= 1/2 x GMm / ( R + h)
Answer: for 1 is number 1
and for 2 is 3
Explanation:
Answer:
The answer is "Choice C ".
Explanation:
The relationship between the E and V can be defined as follows:
Let,
When E=0
v is a constant value
Therefore, In the electric potential in a region is a constant value then the electric-field must be into zero that is everywhere in the given region, that's why in this question the "choice c" is correct.