Answer:
<h2>14.05 moles</h2>
Explanation:
To find the number of moles in a substance given it's number of entities we use the formula
where n is the number of moles
N is the number of entities
L is the Avogadro's constant which is
6.02 × 10²³ entities
From the question we have
We have the final answer as
<h3>14.05 moles</h3>
Hope this helps you
The pressure of the gas : 1.1685 atm
<h3>Further explanation</h3>
In general, the gas equation can be written
where
P = pressure, atm
V = volume, liter
n = number of moles
R = gas constant = 0.08206 L.atm / mol K
T = temperature, Kelvin
n=moles=1.5
V=volumes = 30 L
T=temperature=285 K
The pressure :
Answer:A mixture is a mechanical combination of several elements or compounds. Mixtures are used in cooking, chemical manufacturing, and a lot of other processes. A good mixture with the materials evenly distributed facilitates a good after mixture process. That might be a chemical reaction or a great cake. One mixture that we see the results of a lot is the mixture of water, gravel, and Portland cement that, after a good mix, becomes concrete. Other mixtures might include the various plastics and epoxies that require two or more parts to become a finished product. There are so many possible mixtures out there I’d suggest chemical engineering books , chemistry books in general, cook books, books on construction processes, and many other possible sources of mixtures and the results of using them.
Explanation:
Answer:
8.934 g
Step-by-step explanation:
We know we will need a balanced equation with masses and molar masses, so let’s gather all the information in one place.
M_r: 192.12 44.01
H₃C₆H₅O₇ + 3NaHCO₃ ⟶ Na₃C₆H₅O₇ + 3H₂O + 3CO₂
m/g: 13.00
For ease of writing, let's write H₃C₆H₅O₇ as H₃Cit.
(a) Calculate the <em>moles of H₃Cit
</em>
n = 13.00 g × (1 mol H₃Cit /192.12 g H₃Cit)
n = 0.067 67 mol H₃Cit
(b) Calculate the <em>moles of CO₂
</em>
The molar ratio is (3 mol CO₂/1 mol H₃Cit)
n = 0.067 67 mol H₃Cit × (3 mol CO₂/1 mol H₃Cit)
n = 0.2030 mol CO₂
(c) Calculate the <em>mass of CO₂
</em>
m = 0.2030 mol CO₂ × (44.01 g CO₂/1 mol CO₂)
m = 8.934 g CO₂
I believe it is because, Lead has a higher boiling point than zinc. by the time Lead melts and becomes a liquid, the temperature is way higher than the boiling point of Zinc therefore, Zinc becomes a gas.