Answer:
Option C is correct.
The minimum amount of material that is needed for a fission reaction to keep going is called the critical mass.
Explanation:
Nuclear fission is the term used to describe the breakdown of the nucleus of a parent isotope into daughter nuclei.
Normally, the initial energy supplied for nuclear fission is the energy to initiate the first breakdown of the first set of radioactive isotopes that breakdown. Once that happens, the energy released from the first breakdown is enough to drive further breakdown of numerous isotopas in a manner that leads to more energy generation.
But, for this to be able to be sustained and not fizzle out, a particular amount of radioactive material to undergo nuclear fission must be present. This particular amount is termed 'critical mass'
Hope this Helps!!!
Enormous O unpredictability is in reference to the most exceedingly terrible conceivable development rate of the calculation. So O(N log N) implies that it will never keep running in some time more terrible than O(N log N). So in spite of the fact that Al's calculation scales superior to Bob's quadratic algo, it doesn't really mean it is better for ALL info sizes.
Maybe there is critical overhead in building up it, for example, making a lot of clusters or factors. Remember that even an O(N log N) calculation could have 1000 non settled circles that official at O(N) and still be viewed as O(N log N) the length of it is the most exceedingly awful part.
Oxygen gains two electrons when it bonds to form a complete outer shell and magnesium loses two electrons when bonding to gain its full outer shell.
As electrons are negative, the oxygen (which gains electrons) will become negative and the magnesium (which loses electrons) will become positive.
The negative and positive ions will then attract to one another due to the magnetic pull of the positive and negative.
Answer:
A group of atoms bonded together by different chemical reactions. It is the smallest fundamental unit of a chemical compound.
Explanation: