Hello!
On the periodic table, as we go down the periodic table, the ionization energy decreases, but as we go across the periodic table (left to right), the ionization increases.
On the periodic table, lithium (Li) is located in column one, beryllium (Be) is located in column two, and (B) boron is located in column 13. As stated above, when we go across the periodic table (left to right), the ionization increases.
Therefore, the element with the highest ionization energy is Boron, or symbol B on the period table.
Yes that is correct because hypotheses should be testable meaning it can be proven wrong and it has to be reasonable meaning it should make sense.
Answer:
Zn =⇒ Zn+2(0.10) + 2e- (anode)
Zn+2(?M) + 2e- === Zn(s) (cathode)
Zn + Zn+2(?M) ===⇒ Zn+2(0.10) + Zn
E = E^o -0.0592 log Q; in this case E^o is zero.
E = - 0.0592 /n logQ where n is the number of electrons transferred, in this
case n = 2
23 mV x 1 volt/1000mv = 0.023 Volts
0.023 = -0.0592 / 2 log(0.10) / [Zn+2]
0.023 = -0.0296 { log 0.10 – log [Zn+2] }
0.023 = -0.0296{ -1 - log[Zn+2] }
0.023 = +0.0296 + 0.0296log[Zn+2]
-0.0066 = 0.0296log[Zn+2]
-0.22= log[Zn+2]
[Zn+2] = 10^-0.22 = 0.603 Molar
Answer:
The equivalent circuit for the electrode while the electrolyte gel is fresh
From the uploaded diagram the part A is the electrolyte, the part part B is the electrolyte gel when is fresh and the part C is the surface of the skin
Now as the electrolyte gel start to dry out the resistance of the gel begins to increase and this starts to limit the flow of current . Now when the gel is then completely dried out the resistance of the gel then increases to infinity and this in turn cut off flow of current.
The diagram illustrating this is shown on the second uploaded image
Explanation:
Answer: -
Acetic acid
Explanation: -
The intermolecular force of attraction depends on the strength or extent of Hydrogen bonding present in a substance.
Benzene and chloroform does not have hydrogen bonding being non polar molecule.
Water has hydrogen bonding being polar.
However acetic acid being most polar has the maximum hydrogen bonding.
Thus acetic acid has the strongest intermolecular forces of attraction.