C) 1/5 th is the correct answer. Slope is rise over run. You go up 1 and then you go to the right 5. Since the line is facing right it is positive.
Answer:
43°
Step-by-step explanation:
(x + 53)° + (x + 74)° + 73° = 180°
(x + 53 + x + 74)° = 180° - 73°
(2x + 127)° = 107°
2x + 127 = 107
2x = 107 - 127
2x = - 20
x = - 20/2
x = - 10
Answer:
<u><em></em></u>
- <u><em>Yes, it is reasonable to expect that more than one subject will experience headaches</em></u>
Explanation:
Notice that where it says "assume that 55 subjects are randomly selected ..." there is a typo. The correct statement is "assume that 5 subjects are randomly selected ..."
You are given the table with the probability distribution, assuming, correctly, the binomial distribution with n = 5 and p = 0.732.
- p = 0.732 is the probability of success (an individual experiences headaches).
- n = 5 is the number of trials (number of subjects in the sample).
The meaning of the table of the distribution probability is:
The probability that 0 subjects experience headaches is 0.0014; the probability that 1 subject experience headaches is 0.0189, and so on.
To answer whether it <em>is reasonable to expect that more than one subject will experience headaches</em>, you must find the probability that:
- X = 2 or X = 3 or X = 4 or X = 5
That is:
- P(X = 2) + P(X = 3) + P(X = 4) + P(X = 5).
That is also the complement of P(X = 0) or P(X = 1)
From the table:
- P(X = 0) = 0.0014
- P(X = 1) = 0.0189
Hence:
- 1 - P(X = 0) - P(X = 1) = 1 - 0.0014 - 0.0189 = 0.9797
That is very close to 1; thus, it is highly likely that more than 1 subject will experience headaches.
In conclusion, <em>yes, it is reasonable to expect that more than one subject will experience headaches</em>
When you have 3 for every 7, you divide
450 divided by 3
150
Answer:
File doesn't appear, can't help you without enough infomation.
Step-by-step explanation: