Proof:
<span><span>∠1and∠2</span><span>∠1and∠2</span></span> form a linear pair, so by the Supplement Postulate, they are supplementary. That is,
<span><span>m∠1+m∠2=180°</span><span>m∠1+m∠2=180°</span></span>.
<span><span>∠2and∠3</span><span>∠2and∠3</span></span> form a linear pair also, so
<span><span>m∠2+m∠3=180°</span><span>m∠2+m∠3=180°</span></span>.
Subtracting <span><span>m∠2</span><span>m∠2</span></span> from both sides of both equations, we get
<span><span>m∠1=180°−m∠2=m∠3</span><span>m∠1=180°−m∠2=m∠3</span></span>.
Therefore,
<span><span>∠1≅∠3</span><span>∠1≅∠3</span></span>.
You can use a similar argument to prove that <span><span>∠2≅∠4</span><span>∠2≅∠4</span></span>.In the figure,
<span><span>∠1≅∠3</span><span>∠1≅∠3</span></span> and <span><span>∠2≅∠4</span><span>∠2≅∠4</span></span>.