Answer:
option (A)
Explanation:
According to the Archimede's principle, when a body s immersed partly or wholly in a liquid, it experiences an upward force which is called buoyant force. The buoyant force is equal to the loss in the weight of body.
The weight of liquid displaces by the body is equal to the loss in weight of body.
Thus, option (a) is true.
Answer:
Final Length = 30 cm
Explanation:
The relationship between the force applied on a string and its stretching length, within the elastic limit, is given by Hooke's Law:
F = kΔx
where,
F = Force applied
k = spring constant
Δx = change in length of spring
First, we find the spring constant of the spring. For this purpose, we have the following data:
F = 50 N
Δx = change in length = 25 cm - 20 cm = 5 cm = 0.05 m
Therefore,
50 N = k(0.05 m)
k = 50 N/0.05 m
k = 1000 N/m
Now, we find the change in its length for F = 100 N:
100 N = (1000 N/m)Δx
Δx = (100 N)/(1000 N/m)
Δx = 0.1 m = 10 cm
but,
Δx = Final Length - Initial Length
10 cm = Final Length - 20 cm
Final Length = 10 cm + 20 cm
<u>Final Length = 30 cm</u>
The Electromagnetic spectrum.
Answer:
Mass of bike = 38 kg.
Explanation:
Kinetic energy is given by the expression, , where m is the mass and v is the velocity.
Here speed of child riding bike = 6 m/s
Mass of child = 30 kg
Total kinetic energy = 1224 J
Let the mass of bike be, m kg
So, total mass of child and bike = (m + 30) kg
Substituting,
So, mass of bike = 38 kg.
Here are the answers to the question. Make sure to give a valid reason, please.
A. the sum of the protons and neutrons in one atom of the element.
B. a ratio based on the mass of a carbon-12 atom.
C. a weighted average of the masses of an element's isotopes.
D. twice the number of protons in one atom of the element.