The vertical component of the force exerted by the hi.nge on the beam is 114.77 N.
<h3>Tension in the cable</h3>
Apply the principle of moment and calculate the tension in the cable;
Clockwise torque = TL sinθ
Anticlockwise torque = ¹/₂WL
TL sinθ = ¹/₂WL
T sinθ = ¹/₂W
T = (W)/(2 sinθ)
T = (29 x 9.8)/(2 x sin57)
T = 169.43 N
<h3>Vertical component of the force</h3>
T + F = W
F = W - T
F = (9.8 x 29) - 169.43
F = 114.77 N
Thus, the vertical component of the force exerted by the hi.nge on the beam is 114.77 N.
Learn more about tension here: brainly.com/question/24994188
#SPJ1
Answer:
65 m/s
Explanation:
v=v0+at <=> v = 11 + 12 t ∧ t = 4.5 s <=> v = 11 + 12×4.5 <=> v = 65 m/s
Answer:
C
Explanation:
An object in motion will stay in motion unless acted on by a net positive or negative force.
For answer A. If the object were to be in an orbit, it would inevitably accelerate due to it being acted on by the gravitational force from the object it is orbiting. At different points in the orbit, the object will move at different speeds and continuously transfer between kinetic and potential energy.
For answer B. The object would would not stop their motion. In order for the object to lose energy, it would have to transfer it through friction or through its interaction with a gravitational field.
For answer D. No energy is "required" to maintain constant motion unless the object is willingly fighting against a resistive force like friction or a graviational well.
Answer:
response
Explanation:
Acceleration is your changing Velocity. An object that is ACCELERATING is experiencing a change in velocity. usually positive. if an object such as a car reduces velocity, it is called deceleration
Answer:
0.24 ? I hope that was the answer you were looking for.
Explanation: