Answer:
North America, Europe, and most of Asia.
<u><em>I hope this helped at all.</em></u>
If you hear a clap of thunder in a time of 16.2s after seeing the associated lightning strike, you are: 5508 m far from the lightning strike
To solve this problem we must consider that the speed of light is greater than the speed of sound, therefore to calculate the distance we must use the speed of sound (340 m/s).
The formula and procedure we will use to solve this exercise is:
x = v * t
Where:
- x = distance
- t = time
- v = velocity
Information about the problem:
- v(sound) = 340 m/s
- t = 16.2 s
- x=?
Applying the distance formula we have that:
x = v * t
x= 340 m/s * 16.2 s
x = 5508 m
<h3>What is velocity?</h3>
It is a physical quantity that indicates the displacement of a mobile per unit of time, it is expressed in units of distance per time, for example (miles/h, km/h).
Learn more about velocity at: brainly.com/question/80295?source=archive
#SPJ4
Answer:
0.2943 Nm
Explanation:
Work done is given a the product of force and diatance moved and expressed by the formula
W=Fd
Here W represent work, F is applied force and d is perpendicular distance
Also, we know that F=mg where m is the mass of an object and g is acceleration due to gravity. Substituting this back into the initial equation then
W=mgd
Taking acceleration due to gravity as 9.81 m/s2 and substituting mass with 0.1 kg and distance with 0.3 m then
W=0.1*9.81*0.3=0.2943 Nm
- Initial velocity (u) = 10 m/s
- Final velocity (v) = 22 m/s
- Time (t) = 12 s
- Mass (m) = 200 Kg
- Let the acceleration be a.
- By using the equation of motion,
v = u + at, we have
- 22 m/s = 10 m/s + 12 s × a
- or, 22m/s - 10 m/s = 12 s × a
- or, 12 m/s = 12 s × a
- or, a = 1 m/s^2
- Let the force be F.
- We know, F = ma
- Therefore, the force on the accelerated object (F)
- = ma
- = (200 × 1) N
- = 200 N
<u>Answer</u><u>:</u>
<u>b)</u><u> </u><u>2</u><u>0</u><u>0</u><u> </u><u>N</u>
Hope you could understand.
If you have any query, feel free to ask.
Force decreases as distance increases