Answer:
2.068 x 10^6 m / s
Explanation:
radius, r = 5.92 x 10^-11 m
mass of electron, m = 9.1 x 10^-31 kg
charge of electron, q = 1.6 x 10^-19 C
As the electron is revolving in a circular path, it experiences a centripetal force which is balanced by the electrostatic force between the electron and the nucleus.
centripetal force =
Electrostatic force =
where, k be the Coulombic constant, k = 9 x 10^9 Nm^2 / C^2
So, balancing both the forces we get
v = 2.068 x 10^6 m / s
Thus, the speed of the electron is give by 2.068 x 10^6 m / s.
Answer:
0.661 s, 5.29 m
Explanation:
In the y direction:
Δy = 2.14 m
v₀ = 0 m/s
a = 9.8 m/s²
Find: t
Δy = v₀ t + ½ at²
(2.14 m) = (0 m/s) t + ½ (9.8 m/s²) t²
t = 0.661 s
In the x direction:
v₀ = 8 m/s
a = 0 m/s²
t = 0.661 s
Find: Δx
Δx = v₀ t + ½ at²
Δx = (8 m/s) (0.661 s) + ½ (0 m/s²) (0.661 s)²
Δx = 5.29 m
Round as needed.
Answer:
Base-emitter and Base-collector junctions are forward biased
We have that the most stable nuclei are the ones with the highest average binding energy. We see that Nitrogen has a mass number of 15 and that in this region of the graph average binding energy is low. Silver and Gold are along a line where there is a constant decline in average binding energy; silver has more than gold. However, we see that at the start of this decline, there is Fe 56. This region has the elements with the highest average binding energy; Nickel with a mass number of 58 is right there and thus it is the most stable nucleus out of the listed ones.