Answer:
Step-by-step explanation:
Here a equation of the line is given to us and we need to find out the equation of line which passes through the given point and parallel to the given line , the given equation is ,
Firstly convert it into <em>s</em><em>l</em><em>o</em><em>p</em><em>e</em><em> </em><em>i</em><em>n</em><em>t</em><em>e</em><em>r</em><em>c</em><em>e</em><em>p</em><em>t</em><em> </em><em>f</em><em>o</em><em>r</em><em>m</em><em> </em>of the line which is <u>y</u><u> </u><u>=</u><u> </u><u>m</u><u>x</u><u> </u><u>+</u><u> </u><u>x</u><u> </u>, as ;
On comparing it to <em>y</em><em> </em><em>=</em><em> </em><em>m</em><em>x</em><em> </em><em>+</em><em> </em><em>c</em><em> </em>, we have ,
Now as we know that the <em>s</em><em>l</em><em>o</em><em>p</em><em>e</em><em> </em><em>o</em><em>f</em><em> </em><em>t</em><em>w</em><em>o</em><em> </em><em>p</em><em>a</em><em>r</em><em>a</em><em>l</em><em>l</em><em>e</em><em>l</em><em> </em><em>l</em><em>i</em><em>n</em><em>e</em><em>s</em><em> </em><em>i</em><em>s</em><em> </em><em>s</em><em>a</em><em>m</em><em>e</em><em> </em>. Therefore the slope of the parallel line will be ,
Now we may use <em>p</em><em>o</em><em>i</em><em>n</em><em>t</em><em> </em><em>s</em><em>l</em><em>o</em><em>p</em><em>e</em><em> </em><em>f</em><em>o</em><em>r</em><em>m</em><em> </em>of the line as ,
On substituting the respective values ,
Again the equation can be rewritten as ,
The average rate of change (AROC) of a function f(x) on an interval [a, b] is equal to the slope of the secant line to the graph of f(x) that passes through (a, f(a)) and (b, f(b)), a.k.a. the difference quotient given by
So for f(x) = x² on [1, 5], the AROC of f is
Answer:
There is no value of x to fit this requirement.
Step-by-step explanation:
The 2 perimeters in terms of x are:
4(x + 3) for the square and
2(x+1) + 2(x +4) for the rectangle
and these need to be equal so
we equate these 2 and solve for x:
4(x + 3) = 2(x+1) + 2(x +4)
4x + 12 = 2x + 2 + 2x + 8
4x + 12 = 4x + 10
4x - 4x = 10 - 12
0 = -2 which is of course absurd so there is no solution to this equation.
Plug in 6 for x and solve out for f(x)