A neutron, I'm technically not really guessing but I'm kind of guessing because there's only 3 particles in a atom, a proton, neutron and electron, for only protons and neutrons live in the nucleus so be deduction would be neutrons.
Well one mole of stuff, any stuff, including carbon dioxide, specifies
6.022
×
10
23
individual items of that stuff.
Explanation:
And thus we work out the quotient:
7.2
×
10
25
⋅
carbon dioxide molecules
6.022
×
10
23
⋅
carbon dioxide molecules
⋅
m
o
l
−
1
≅
120
⋅
m
o
l
carbon dioxide
.
This is dimensionally consistent, because we get an answer with units
1
m
o
l
−
1
=
1
1
mol
=
m
o
l
as required.
Answer:
0.68 V
Explanation:
For anode;
3Mg(s) ---->3Mg^2+(aq) + 6e
For cathode;
2Al^3+(aq) + 6e -----> 2Al(s)
Overall balanced reaction equation;
3Mg(s) + 2Al^3+(aq) ----> 3Mg^2+(aq) + 2Al(s)
Since
E°anode = -2.356 V
E°cathode = -1.676 V
E°cell=-1.676 -(-2.356)
E°cell= 0.68 V
It's the eye because it's the organ of sight
Orbital shell notation of fluorine is 2. 7 while that of oxygen s 2. 6. This means that these elements (that follow each other in the periodic table) will have high electronegativity in molecules due to their high atomic number (which causes them to strongly attract electron orbital shell closer to their nucleus). NB: Atomic number of a peroid increased from left to right of the periodic table.
Therefore, in the first molecule, the negative dipole would most likely be located between the F atoms In the second molecule the negative molecule would be most likely located in the between the O and F atoms.